Imprints of Standard Model processes on the matter fluctuation spectrum

PACIFIC 2024

Francis-Yan Cyr-Racine

Department of Physics and Astronomy, University of New Mexico

David Camarena

• Two regimes of structure formation: linear vs nonlinear

• Two regimes of structure formation: steep vs shallow

• Fluctuation amplitude reflects state of Universe when a scale becomes causal.

All astrophysical objects populating the cosmos come from initial fluctuations that started growing during radiation domination

Must pay close attention to evolution of matter fluctuations in radiation domination!

Why is the matter fluctuation spectrum so featureless at k > 0.1 h/Mpc?

However, above $T_{SM} \sim m_e$ the SM goes through important mass/energy thresholds

Why do we care? In the naïve featureless case, nearly all sub-galactic modes go nonlinear at the same time

Two classes of SM effects for the high-k matter fluctuation spectrum

 Mass/energy thresholds (e.g. e+eannihilation, µ+µ- annihilation, QCD, etc.) => rescales clock.

• Radiation behavior (e.g. fluid like vs free-streaming).

Mass/Energy Thresholds

• The very shallow, featureless high-k matter spectrum is the result of a scaling solution during radiation

domination:

$a^2H = \text{constant}$

This scaling is however broken when crossing mass thresholds.

Mass/energy thresholds in the SM

• This is usually described via the effective number of relativistic degrees of freedom:

Mass/energy thresholds in the SM

 Breaking from the *a*²*H* scaling behavior => modes enter the horizon earlier than predicted by naïve scaling

 Breaking from the *a*²*H* scaling behavior => modified growth for dark matter fluctuations*

$$d_{\rm c}^{\prime\prime} + \begin{bmatrix} \frac{1}{a} + \frac{d \ln (a^2 H)}{da} \end{bmatrix} d_{\rm c}^{\prime} = \frac{1}{2} \begin{pmatrix} k^2 \Phi_+ \\ (a^2 H)^2 \end{pmatrix}$$

$$Extra \\ damping \\ contribution \\ H_{\rm c} = \frac{n_{\rm c} - \bar{n}_{\rm c}}{\bar{n}_{\rm c}} = \delta_{\rm c} - 3\phi$$

$$*: prime symbol means scale factor derivative$$

 Breaking from the *a*²*H* scaling behavior => modified growth for dark matter fluctuations

 Breaking from the *a*²*H* scaling behavior => modified growth for dark matter fluctuations

Breaking from the *a*²*H* scaling behavior => modified gravitational potential

Impact of mass/energy thresholds on dark matter fluctuations

• Modes entering the horizon while *a*²*H* is increasing experience a boost in growth, due to the effective equation of state falling below 1/3.

$$w_{\text{eff}} = \frac{1}{3} \left[1 - 2 \frac{d \ln \left(a^2 H\right)}{d \ln a} \right]$$

• For subhorizon modes, *a*²*H* increasing leads to a reduced growth of dark matter fluctuations.

Effective equation of state

Impact of radiation behavior: Onset of neutrino free-streaming

• Neutrinos => first species to free-stream in the Universe

• Growth of neutrino anisotropic stress

Bond et al. (2024)

$$\Phi_{-} = -12\pi G a^2 (\bar{\rho}_{\nu} + \bar{p}_{\nu}) \sigma_{\nu}$$

$$\Phi_{-}=\phi-\psi$$

Impact of radiation behavior: Onset of neutrino free-streaming

• Before neutrino decoupling:

$$d_{\rm c}'' + \left[\frac{1}{a} + \frac{d\ln(a^2H)}{da}\right] d_{\rm c}' = \frac{1}{2} \frac{k^2 \Phi_+}{(a^2H)^2}$$

• After neutrino decoupling (usually what we solve for in CMB and LSS analyses):

$$d_{\rm c}'' + \left[\frac{1}{a} + \frac{d\ln\left(a^2H\right)}{da}\right] d_{\rm c}' = \left(\frac{1}{2}\frac{k^2(\Phi_+ - \Phi_-)}{(a^2H)^2}\right)$$

Impact of neutrino decoupling on matter clustering

Kreisch, Cyr-Racine, Doré (2020)

Example of impact of neutrino decoupling

Kreisch, Cyr-Racine, Doré (2020)

Impact: Features in the mass function at small masses

Zheng et al. (2024)

Conclusions

- All dark matter halos comes from fluctuations that entered the horizon during radiation domination.
- Above the LCDM desert, SM processes will break the scaling solution, introducing features in the matter power spectrum.
- From background effects, we generally expect an enhancement of power for modes entering the horizon before e+e- annihilation.
- On the other hand, modes at k > 10⁴ h/Mpc (i.e. becoming causal before neutrino streaming), do not get the "free-streaming" boost.
- Stay tuned for net effect!